
Origin, Architecture and Usage

Miek Gieben (miek@coredns.io; miek@miek.nl)
22nd November 2021

Looking at CoreDNS, how it works and a peek at writing plugins.

1/21

Introduction

CoreDNS — a flexible DNS server, written in Go. Runs queries through a chain of
plugins. Open Source – APLv2 licensed. Started in 2016. Graduated project in the
CNCF.

• Make running a DNS server easy. Single binary, sane defaults, autotuning of
options (not always possible);

• Allow plugins to focus on functionality. CoreDNS deals with DNS details.

In this presentation: why CoreDNS, how does it work, how do you use it and some
closing thoughts. (Time permitting: look at source code)

2/21

Enough DNS Servers Already?

Yes, but maybe not? Wasn’t planning to write one. But:

• Wanted Prometheus metrics out of BIND9; was quite a kludge;

• Already written a nice DNS library (miekg/dns);

• A DNS server in Go didn’t exist.

Creation documented at https://miek.nl/2016/march/14/first-light/.

Popular in service discovery space (Kubernetes), also suited for plain old DNS stuff.

3/21

https://miek.nl/2016/march/14/first-light/

How Does it Work: Architecture

+-----+ +-----+ +-----+ +------+
| DNS | | DoH | | DoT | | gRPC | - protocols

+----+-----+----+-----+---+-----+---+------+-------+
| |
| +-----+ +-----+ +-----+ +------+ |
| CoreDNS |plug1| |plug2| | ... | | ... | |
| +-----+ +-----+ +-----+ +------+ |
| |
+-------+-------------+------+----------------+----+

| miekg/dns | | mholt/caddy | - libraries
+-------------+ +----------------+
DNS protocol plugins + conf

4/21

Corefile

Main configuration for CoreDNS.

ZONE[:PORT] {
PLUG1 # comment
PLUG2

}
ANOTHERZONE[:PORT] {
PLUG3

}

• https://example.net→ DoH

• tls://example.net→ DoT

• grpc://example.net→ gRPC

• dns://example.net→ DNS (default)

• quic://example.net→ QUIC (once
implemented)

DoH, DoT, QUIC and gRPC need TLS certs (tls
plugin).

5/21

Corefile II

coredns.io {
file db.coredns.io.signed
transfer {
to * 185.49.140.62
}
sign coredns.io {
key file Kcoredns.io.+013+16376
}

}
example.net:1053 {

file example.net.db
log

}

Creates 2 (internal servers)

1. runs on port 53 and is authoritative
for coredns.io.

2. runs on port 1053 and answers
example.net queries.

Both chain a few plugins, file, transfer, sign
and log

6/21

Corefile III

file ‐ load RFC 1035 zone data from disk.
transfer ‐ outgoing zone transfers.
sign ‐ auto‐sign zone file (i.e. DNSSEC).
log ‐ query log (to standard output).

plugin/sign: Signing ”coredns.io.” because inception ”2020‐09‐30T17:20:46.000Z”
was more than: 144h0m0s ago
plugin/sign: Successfully signed zone ”coredns.io.” in ”db.coredns.io.signed” with key
tags ”16376” and 1602010680 SOA serial
plugin/file: Successfully reloaded zone ”coredns.io.” in ”db.coredns.io.signed” with
1602010680 SOA serial
plugin/transfer: Sent notifies for zone ”coredns.io.” to [* 185.49.140.62:53]

7/21

Type of Plugins

No official type system, but plugins can:

• generate response from code/data backend: whoami, forward, kubernetes, ...

• inspect query and perform action: log, cache, ...

• inspect and change query: rewrite, template, bufsize, ...

• affect CoreDNS process: health, ready, reload, on, prometheus, ...

• Corefile helpers: import.

The order in which plugins are traversed is set at compile time, ordering in Corefile
is purely aesthetic.

8/21

Plugins for Debugging

debug

• have extra logging.

• stop recovering from panics.

pprof ‐ add profile endpoint.
prometheus ‐ add prometheus metrics endpoint.
trace ‐ opentracing of the request (what functions are called internally). dnstap ‐
DNS tap support (DNS standard).

9/21

prometheus

example.net {
log
whoami
prometheus
}

% # reads Corefile in .
% coredns -p 1053
example.net.:1053
CoreDNS-1.8.6
linux/amd64, go1.17.3,

% dig @localhost whoami.example.net -p 1053 +noall +add
whoami.example.net. 0 IN A 127.0.0.1
_udp.whoami.example.net. 0 IN SRV 0 0 44962 .

10/21

prometheus II

[INFO] 127.0.0.1:46297 - 15653 "A IN whoami.example.net. udp 59 false
4096" NOERROR qr,aa,rd 112 0.000146456s

And metrics:

% curl -s http://localhost:9153/metrics | grep '^coredns_'
...
coredns_dns_responses_total{rcode="NOERROR",

server="dns://:1053",zone="example.net."} 4
...

11/21

dnstap

taps into a server and shows queries performed/received.

.:1053 {
forward . 8.8.8.8
log
dnstap /tmp/dnstap.sock full

}

Run dnstap on the same socket and see what’s happening.

Assumes queries end up in CoreDNS, if not use last report: tcpdump.

12/21

Project

• Github: https://github.com/coredns/coredns. Discussions mostly via
issues.

• Each plugin owned by person (via CODEOWNERS).

• Release every few months,

• The ”core” is relative stable, mostly bug fixes in plugins or new plugins.

• Because Go: compiles to x64, ARM, MIPS, ..., 9 architectures/OSes in current
release.

13/21

https://github.com/coredns/coredns

Personal Reflections on Developing CoreDNS

• UDP is hard to deal with. TCP saw many optimizations (in Linux at least), UDP
not a lot (QUIC will change this)

• Switching to kernel mode (system calls) is expensive, forward plugin is
hampered by that.

• Caching and full recursive resolver is harder than it looks.

Might start writing full recursive DNS resolver, which should solve some of these
issues, mostly seen in forward and (to some extend) cache plugin.

14/21

Closer Look at Plugins

Plugin Building Blocks

Each plugin has (basically) four parts:

1. A README.md ‐ man page like structured document detailing all you need to
know about this plugin. Includes: health information, metrics, etc..

2. A setup() function that parses the configuration out of the Corefile.

3. The ServeDNS() function that does the DNS serving.

4. Tests, both e2e and unit.

15/21

Look at Fun Little Plugin: any

Very small plugin: any ‐ gives a minimal response to ANY queries.

;; ANSWER SECTION:
whoami.example.net. 8482 IN HINFO "ANY obsoleted" "See RFC 8482"

Let look at its source:
https://github.com/coredns/coredns/blob/master/plugin/any/...

16/21

https://github.com/coredns/coredns/blob/master/plugin/any/...

Source of any, README.md

any

Name
any - gives a minimal response to ANY queries.

Description
any basically blocks ANY queries by responding ...

Syntax
~~~ txt
any
~~~

....
17/21

Source of any, types

// Any is a plugin that returns a HINFO reply to ANY queries.
type Any struct {

Next plugin.Handler
}
// Name implements the Handler interface.
func (a Any) Name() string { return "any" }

18/21

Source of any, setup()

func init() { plugin.Register("any", setup) }

func setup(c *caddy.Controller) error {
a := Any{}

dnsserver.GetConfig(c).AddPlugin(func(next plugin.Handler)
plugin.Handler {

a.Next = next
return a

})
return nil

}

19/21

Source of any, ServeDNS()

// ServeDNS implements the plugin.Handler interface.
func (a Any) ServeDNS(ctx context.Context, w dns.ResponseWriter, r *dns.Msg)

(int, error) {
if r.Question[0].Qtype != dns.TypeANY {
return plugin.NextOrFailure(a.Name(), a.Next, ctx, w, r)

}
m := new(dns.Msg)
m.SetReply(r)
hdr := dns.RR_Header{Name: r.Question[0].Name, Ttl: 8482, Class: dns.ClassINET,
Rrtype: dns.TypeHINFO}

m.Answer = []dns.RR{ &dns.HINFO{Hdr: hdr, Cpu: "ANY obsoleted", Os: "See RFC 8482"}}
w.WriteMsg(m)
return 0, nil

}

20/21

CoreDNS

• A capable DNS server, and popular (150M docker pulls)

• Extensive tests; cold run takes 90s.

• Easy to extend. No DNS knowledge needed (YMMV).

• Exiting new developments on the horizon.

Thank you!

21/21

	Closer Look at Plugins

